Repair capacity for UV light induced DNA damage associated with risk of nonmelanoma skin cancer and tumor progression.

نویسندگان

  • Li-E Wang
  • Chunying Li
  • Sara S Strom
  • Leonard H Goldberg
  • Abenaa Brewster
  • Zhaozheng Guo
  • Yawei Qiao
  • Gary L Clayman
  • J Jack Lee
  • Adel K El-Naggar
  • Victor G Prieto
  • Madeleine Duvic
  • Scott M Lippman
  • Randal S Weber
  • Margaret L Kripke
  • Qingyi Wei
چکیده

PURPOSE To examine the role of suboptimal DNA repair capacity (DRC) for UV light-induced DNA damage in the development of nonmelanoma skin cancer (NMSC) and tumor progression. EXPERIMENTAL DESIGN We conducted a hospital-based case-control study of 255 patients with newly diagnosed NMSC [146 with basal cell carcinoma (BCC) and 109 with squamous cell carcinoma (SCC)] and 333 cancer-free controls. We collected information on demographic variables and risk factors from questionnaires, tumor characteristics from medical records, and lymphocytic DRC phenotype by the host-cell reactivation assay. Multivariable logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals (95% CI). RESULTS Overall, there was a relative 16% reduction in DRC in NMSC patients compared with controls (P < 0.001 for BCC and for SCC, respectively). DRC below the controls' median value was associated with increased risk significantly for BCC (OR, 1.62; 95% CI, 1.07-2.45) but borderline for SCC (OR, 1.63; 95% CI, 0.95-2.79) after adjustment for age, sex, and other assay-related covariates. When the highest tertile of controls' DRC was used as the reference, the intermediate and low DRC were associated with a statistically significant trend for increasing risk for both BCC (P(trend) = 0.007) and SCC (P(trend) = 0.020). However, patients with aggressive or multiple SCC tended to have a higher DRC than those with nonaggressive or single SCC. CONCLUSIONS Reduced DRC is an independent risk factor for BCC and single or nonaggressive SCC but not for multiple primaries, local aggressiveness, or recurrence of NMSC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor and Stem Cell Biology PTEN Positively Regulates UVB-Induced DNA Damage Repair

Nonmelanoma skin cancer is the most common cancer in the United States, where DNA-damaging ultraviolet B (UVB) radiation from the sun remains the major environmental risk factor. However, the critical genetic targets of UVB radiation are undefined. Here we show that attenuating PTEN in epidermal keratinocytes is a predisposing factor for UVB-induced skin carcinogenesis in mice. In skin papillom...

متن کامل

Oxidative Stress-Induced Protein Damage Inhibits DNA Repair and Determines Mutation Risk and Therapeutic Efficacy.

UNLABELLED The relationship between sun exposure and nonmelanoma skin cancer risk is well established. Solar UV (wavelength 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 nm) component of solar UV radiation i...

متن کامل

Interleukin-12-deficient mice are at greater risk of UV radiation-induced skin tumors and malignant transformation of papillomas to carcinomas.

Solar UV radiation-induced immunosuppression is a risk factor for nonmelanoma skin cancer. Interleukin (IL)-12 has been shown to possess antitumor activity and inhibit the immunosuppressive effects of UV radiation in mice. In this study, we generated IL-12 knockout (KO) mice on a C3H/HeN background to characterize the role of IL-12 in photocarcinogenesis. After exposure of the mice to UVB (180 ...

متن کامل

Powerful Skin Cancer Protection by a CPD-Photolyase Transgene

BACKGROUND The high and steadily increasing incidence of ultraviolet-B (UV-B)-induced skin cancer is a problem recognized worldwide. UV introduces different types of damage into the DNA, notably cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs). If unrepaired, these photolesions can give rise to cell death, mutation induction, and onset of carcinogenic events, but the relati...

متن کامل

PTEN positively regulates UVB-induced DNA damage repair.

Nonmelanoma skin cancer is the most common cancer in the United States, where DNA-damaging ultraviolet B (UVB) radiation from the sun remains the major environmental risk factor. However, the critical genetic targets of UVB radiation are undefined. Here we show that attenuating PTEN in epidermal keratinocytes is a predisposing factor for UVB-induced skin carcinogenesis in mice. In skin papillom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 13 21  شماره 

صفحات  -

تاریخ انتشار 2007